Muons, Electrons and Photons

1

oMuon spectrometers oEM calorimeters oTrackers oElectron and Photon ID

Muon identification and measurement(1)

Example of what is expected to be found behind the ATLAS calorimeter (>12)

- Real muons
 ("prompt" and secondaries)
- "punch-through"

 Uncorrelated hits (from neutron and photon gas)

Muon id(2) : neutron induced hits

- Slow neutrons linger around for ms before being captured,
- Radiative captures in turn produce photons
- . Both interact(n:10⁻⁴, γ :10⁻²)with the muon chamber gas \rightarrow random hits

ATLAS Muon id(3): find tracks

And cut on transverse momentum...

3 stations of precision chambers (drift tubes) interleaved with Trigger chambers

LVL1 Trigger Chambers= fast response (25 ns) \rightarrow lower rate area (barrel)=RPC- higher rate=TGC

ATLAS LVL1 Muon

- Hit in RPC1
- Extrapolates straight from VX to RPC2 \oplus window for coincidence=low p_T
- + Extrapolates to RPC3 \oplus window for coincidence=high p_{T}

	Process	Barrel	End-cap	Combined system
Low-p _T (6 GeV)	π/K decays	7.0	9.8	16.8
033	ь	1.9	2.1	4.0
	с	1.1	1.3	2.4
	w	0.004	0.005	0.009
	Total	10.0	13.2	23.2 kHz
High-p _⊤ (20 GeV)	π/K decays	0.3	1.8	2.1
10 ³⁴	Ь	0.4	0.7	1.1
	c	0.2	0.3	0.5
	w	0.035	0.041	0.076
	Total	0.9	2.8	3.8 kHz

Further Muon ID(5)

Further ID steps:

- Reconstruct track in spectrometer \rightarrow momentum (LVL2,LVL3,offline)
- Extrapolate to tracker; do combined fit (LVL2,LVL3,offline) allows some rejection of π/K decays (low L, low Eth)
- Check signals in calorimeter (last layers of HCAL are quiet)
- Identify the sign (lepton or antilepton.... \rightarrow W' flavour/asymetry,..)

CMS Muon ID(1)

- Chambers "embedded" in iron flux return after ${\sim}8\lambda$
- Punch-through more important in first layers
- Include precision chambers (Drift Tubes) at LVL1 for better low momentum

Figure 1: Layout of the CMS muon system.

CMS Muon ID(3)

1033

Combined mu-ID at LVL3

Rate against efficiency (W decay)

Muon trigger and identification summary

- •Instrumental BG : showers debris, random (n-induced) hits
- •Fast pattern recognition needed
- •LVL1 rate dominated by real muons
- •Final rate strongly linked to threshold
- Final Strategy depends on Luminosity and Physics
 low L /B physics : threshold down to ~6 GeV/c desirable
 high L threshold to be raised up to 20 GeV/c p_T

Magnets and muon measurements : ATLAS Barrel Toroid

Atlas toroid magnet : barrel assembled

Atlas toroid : measure and describe the B-field

Strategy : from Hall probes recalculate conductor position, then deduce B everywhere

Atlas muon alignment system

Goal:control positions to< 30microns/10m
Uses light (IR) rays, masks and sensors
> projective to monitor plans
> axial to monitor within plans
• About 10 000 sensors overall

Tested successfully (15 μ m rms when displacing one chamber) in CERN H8 beam line comparing alignment obtained with tracks and sensors.

In Atlas pit plan to take some data with field-off to have straight tracks -> initial values of relative positions well controlled ; then follow-up with alignment system.

Contributions to Atlas muon resolution

Muon spectrometer only

Combined with tracker(low energy part)

CMS solenoid

Main parameters

- •4 Teslas
- 7m diameter, 15 m length,
- 2.5 GJ stored
- •Coil is made of 5 modules (CB-2 \rightarrow CB+2),each with 4 layers
- •Cold test on surface : Just starting now. Coil is cold !

CMS: DT module insertion

Contributions to CMS muon resolution

Track momentum is measured both:

 -in the DT interleaved with iron flux return where it was identified
 -in the central tracking system after suitable extrapolation and combined fit

As opposed to the "round" tubes of Atlas, the time to position relation is in CMS rectangular tubes **linear**

Figure 2: Schematic view of a drift cell with electric field lines.

CMS muon resolution(ID and spectro combined)

Alignment less demanding than for ATLAS

More accurate than Atlas. On the other hand Atlas spectrometer measurements take place in a cleaner environment (air instead of iron, and after >~12 λ)

EM calorimeter requirements

- "flag" EM showers from overwhelming jet "background" already at LVL1 ie every 25 ns (fast)
- Provide accurate energy measurement (precise, stable, uniform) - $H \rightarrow \gamma \gamma$ most demanding $\delta M/M=1\%$ or better at ~120 GeV -large dynamic range few MeV (noise) to several TeV
- Provide position measurement
 - -link with electron track
 - -direction of photon from vertex point
- Provide accurate timing (100 ps=3cm)
- Provide some angular measurement
- Provide jet-electron and jet-photon rejection at high level (granular)
- Keep performance after several years of irradiation (rad resistant)
- Two Different techniques ATLAS = LAr CMS = Crystals

CMS PbWO₄ crystal calorimeter

PbWO₄: -radiation hard (but...) -fast(80% in 25ns) -compact X_0 =0.9 cm R_M=2.2 cm -4T \rightarrow APD -low LY: 6 photo-electrons/MeV

barrel: 62k crystals 2.2 x 2.2 x23cm
end-caps: 15k crystals 3 x 3 x 22 cm

CMS PbWO₄ crystals

50k crystals out of 62 k delivered (barrel) all APDs and VPT delivered

Front End Electronics

- preamplifier/shaper in CMOS-0.25µm
- 3 gains, with 1 adc/gain (12 bits)
- noise ~ 40 MeV

CMS PbWO₄ APDs

Manufactured by Hamamatsu Photonics, Japan

Properties :

•	Active area	$5 \ge 5 \text{ mm}^2$	
•	Quantum Efficiency	72% at 420 nm	
•	Operating gain (M)	50 +	_
•	Charge collection within 20 ns	99 ± 1%	
•	Capacitance	80 pF	
•	Serial resistance	< 10 O	
•	Dark Current (Id) before irradiation	~ 3.5 nA	
•	Voltage sensitivity (1/M dM/dV)	3.15 % / V	
•	Temperature sensitivity (1/M dM/dT)	- 2.4 % / °C ◀	 -2% for crystal as well
•	Excess noise factor	2.1	
•	Breakdown - operating voltage (Vb - Vr)	$45 \pm 5 \mathrm{V}$	23

•Light spectrum: broad peak around 450 nm (blue)

Light transmission drops/recover by few % under irradiation:
 →monitoring by laser pulses at several wavelengths (time scale=hours)

CMS ECAL calibration strategy (II)

~1 month continuous data taking at 2x10³³ cm⁻²s⁻¹
 Corresponds to 3-4 months real LHC running?

Super modules assembly and test beam

•32/36 SM ready for lowering in 2006•EC lowered during 2007/2008 shutdown

CMS crystals : selected test beam results

CMS crystals: Energy resolution in test beam

29

Atlas Liquid Argon EM calorimeter

Lead-Liquid argon: -radiation hard, stable, uniform -fast (accordion + el-shaping) -"easily" granular-3 samplings in depth front .008 x .1 middle .025 x .025 back .050 x .025 -less compact/crystals $X_0 = 2 \text{ cm}, R_M \sim 4 \text{ cm} (93\% \text{ in } 3x3)$ -sampling \rightarrow 10%/ \sqrt{E} -noise: ~30 MeV/central cell -3 gains + analog sum/LVL1 -180 kchannels in total -cell to cell calibration purely electronic 30

Atlas LAr-EM: ionisation and calibration signals

Atlas LAr-EM: selected test beam results

Atlas LAr-EM: selected test beam results

Atlas LAr-EM: some pictures....

Detectors fully cold tested on surface
Barrel cool down in final position in the pit starting April 06

EM shower ID at LVL1

Basic approach:

"digitize and sum" (CMS) or "sum and digitize" (ATLAS) signals from a "small" $\delta \eta \times \delta \phi$ region of EM calorimeter, but "large enough" to fully contain an EM shower and compare to threshold.

Jet background:

-huge, but decrease fast with E_{T}

-jets are broad \rightarrow ask for "isolation",...but pile-up may kill good candidates

EM shower ID : LVL1 in ATLAS

Figure 4-15 Inclusive electron trigger rate for luminosity 10³³ cm⁻²s⁻¹, without isolation (solid), requiring only hadronic isolation (dotted) and requiring both electromagnetic and hadronic isolation (dashed).

Figure 4-16 Inclusive electron trigger rate for luminosity 10³⁴ cm⁻²s⁻¹, without isolation (solid), requiring only hadronic isolation (dotted) and requiring both electromagnetic and hadronic isolation (dashed).

Isolation (mostly hadronic-less pileup-threshold~3 GeV/10³⁴) helps

EM shower ID : LVL1 in CMS

Granularity a bit better than ATLAS at LVL1

Trigger towers .087 x .087 (5 x 5 crystals-1x1 HCAL)
"Hit+max" equivalent to 2 x 1 of ATLAS
3 x 3 window for HCAL isolation
Fine grain cut on η profile in Hit cell (1 x 5 crystals) (in ATLAS the equivalent is possible only at LVL2)

EM shower ID : LVL1 in CMS

Fig. 3.12: The integrated QCD background rate above electron/photon trigger E_T cutoff is plotted versus the E_T cutoff for high and low luminosity operation of the LHC. Data for both isolated and non-isolated electrons are shown.

Estimated rate lower than ATLAS (at 30GeV HL: 15 kHZ against 30) $_{38}$

EM shower $\rightarrow e/\gamma$: need tracker information

Basic approach : -electron: a track points to the EM cluster with E/p~1, but brems...

-photon: nothing in front of EM cluster,.. but conversion, Dalitz, pile-up

Beforehand, since rates are high at LVL1, use at LVL2 the full granularity information from EM calorimeter

CMS ID material

ATLAS tracker: Si and TRT in 2T

Transition Radiation Tracker: -long(70cm) straws \rightarrow high occupancy -large number of crossed straws(~30) \rightarrow "easy" pattern

Transition radiation: -charged particle crossing N thin foils(CH₂)/vacuum transitions emits photons in X range if γ >1 I(emitted energy) $\alpha \gamma$ N(photons>E_{th}) $\alpha \log^2 \gamma$ -X-rays materialize in Xenon rich gas giving large signals (>~6 keV against ~2 keV for dE/dx)

Figure 7-28 Ratio between energy of EM clusters to momentum of reconstructed charged tracks for electrons (dashed) and jets. For the 'jet' sample, various components are shown: electrons from W's and Z's (black), electrons from heavy flavour (dense hatch), conversions (light hatch) and hadrons (open). The normalisation between the single electrons and the jet sample is arbitrary.

Electron ID:ATLAS overall

 With the stat generated
(10 ⁶ jets) above 17 GeV E_T the
rejection run out of statistics.

Already before E/p and TRT cuts the background is dominated by real electrons (b/c and conversions)

•TRT is most useful at lower energy where bkg is worse

Cuts	High luminosity				
	Eff <i>e</i> ₃₀ (%)		Rej jets (10 ³)		
LVL1	96.1		0.09		
LVL2 Calo	92.1	(95.6)	0.48	(5.2)	
LVL2 ID	82.5	(89.5)	3.7	(7.8)	
Offline Calo	81.1	(98.3)	8.4	(2.2)	
Offline ID	77.2	(93.6)	22.7	(2.7)	
Matching	75.3	(97.4)	35.8	(1.6)	
TR	67.5	(89.7)	>45		

Trigger Step		Rate (Hz)	Efficiency (%)
LVL2 Calo	0 1 0 3 3	2114 ± 48	95.9 ± 0.3
LVL2 Tracking	2 1033	529 ± 24	88.0 ± 0.5
LVL2 Matching	25 GeV E _T	137 ± 12	86.6 ± 0.6
EF Global		30 ± 5	79.0 ± 0.7

Electron ID : LVL2 in CMS

Starting from LVL1 isolated clusters (5 \times 5) the following steps are made:

•Reconstruct a "super-cluster" and apply E_T threshold (95% eff as LVL1) (thresholds estimated to be ,at 10³⁴, 31 GeV for SC against 30 for LVL1)

•Find corresponding hits in the pixels

- -takes advantage that CoG in calo is independent of brems)
- -extrapolate in $r\phi$ to innermost pixel layer
- -if successful extrapolates to 2^{nd} and 3d pixel layer (r ϕ and z)
- -repeat for other sign hypothesis

Electron ID: LVL2 and 3 in CMS

•Tracking : use calo Super Cluster and corresponding pixel hits as seed.

•LVL3=Apply loose track cuts, position and E/p match

What about Photons ?

- Similar "shower shape" criteria as electrons
- •No track match
- •No E/p
- •"absence of a track" is a weak criterium, especially with pile-up... \rightarrow harder to identify than electrons... In fact: two classes

Photon ID in ATLAS Test beam: single photons Jet background composition 2 overlapped photons (true photons removed-quark brem,..) after "general" calorimeter cuts: 0.5 0.35 $d_m = 3 \text{ mm}$ $d_{m} = 0 \text{ mm}$ strip energy (GeV) 0.3 0.4 strip energy (GeV) 0.25 72% « Isolated » π^0 0.3 0.2 $\eta{\rightarrow}\gamma\gamma,\,\omega{\rightarrow}\gamma\,\pi^0$,KS $\rightarrow2\pi^0$ 13% 0.15 0.2 « multi » π^{0} 4% 0.1 0.1 4% 0.05 electron single charged hadron 4% 5 10 15 20 5 10 15 20 strip number strip number single neutral hadron 1% 2% 0.4E Others $d_{\eta \eta} = 6 \text{ mm}$ $d_m = 9 \text{ mm}$ 0.25 0.35E trip energy (GeV) strip energy (GeV) 0.3 0.2 0.25 0.15 0.2 0.15 0.1 0.1 0.05 0.05 10 10 15 5 15 20 5 20 strip number strip number

•Further rejection of π^0 can be obtained exploiting the fine granularity of the first sampling ($\delta\eta$ =.003 or 5mm). The two photons of a 60 GeV E_T symmetric π^0 decay are separated by >7mm at the calorimeter face!

Photon ID in ATLAS (2)

Overall photon/jet rejection obtained in MC:

-1050 for quark jets -6000 for gluon jets \rightarrow Ultimate performance process dependant! (probability of a high x isolated π^0 is higher in a quark jet than in a gluon jet)

Photon ID in CMS

Back-up slides

Electron ID with TRT

testbeam

TRT suited for "pure" electron sample, but implies reduced efficiency